Immunoglobulin G1 Fc Domain Motions: Implications for Fc Engineering

Martin Frank¹, Ross C. Walker²,³, William N. Lanzilotta⁴, James H. Prestegard⁵ and Adam W. Barb⁶

¹ - Biognos AB, Generatorsgatan 1, 41705 Gothenburg, Sweden
² - San Diego Supercomputer Center, University of California, San Diego, La Jolla, CA 92093, USA
³ - Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
⁴ - Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
⁵ - Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
⁶ - Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA

Correspondence to Adam W. Barb: 2214 MBB, Iowa State University, Ames, IA 50011, USA. abarb@iastate.edu

http://dx.doi.org/10.1016/j.jmb.2014.01.011

Edited by S. Sidhu

Abstract

The fragment crystallizable (Fc) region links the key pathogen identification and destruction properties of immunoglobulin G (IgG). Pathogen opsonization positions Fcs to activate pro-inflammatory Fcγ receptors (FcγRs) on immune cells. The cellular response and committal to a damaging, though protective, immune response are tightly controlled at multiple levels. Control mechanisms are diverse and in many cases unclear, but one frequently suggested contribution originates in FcγR affinity being modulated through shifts in Fc conformational sampling. Here, we report a previously unseen IgG1 Fc conformation. This observation motivated an extensive molecular dynamics investigation of polypeptide and glycan motions that revealed greater amplitude of motion for the N-terminal Cγ2 domains and N-glycan than previously observed. Residues in the Cγ2/Cγ3 interface and disulfide-bonded hinge were identified as influencing the Cγ2 motion. Our results are consistent with a model of Fc that is structurally dynamic. Conformational states that are competent to bind immune-stimulating FcγRs interconverted with Fc conformations distinct from those observed in FcγR complexes, which may represent a transient, nonbinding population.

© 2014 Elsevier Ltd. All rights reserved.

Introduction

The adaptive immune system floods the serum with pathogen-specific immunoglobulin G (IgG) antibodies (5–15 mg/mL) to protect against infection [1]. The antigen-binding Fab domains of IgG are responsible for specificity. Once engaged, however, the fragment crystallizable (Fc) region of IgG initiates the classical complement pathway or cellular-mediated target destruction through interactions with immune cell receptors. Aside from its natural function, the IgG system itself has been appropriated in the treatment of autoimmune disorders [2], and a number of synthetic antibodies have been designed to sequester soluble proteins implicated in other diseases or recognize cancerous tissue [3,4]. Despite this utility, the atomic-level structural factors governing particularly the Fc-mediated immune response remain unclear. Marked improvements in therapeutic antibody efficacy, pharmacokinetics, and production could clearly result from a more complete description of these factors. Here, we present structural data from x-ray crystallography and extensive molecular dynamics (MD) simulations that is relevant to this issue.

The Fc portion of IgG is a homodimer formed by the C-terminal halves of the IgG heavy chains; the monomers are covalently linked by a disulfide ‘hinge’ region that remains intact following papain protease digestion to liberate Fab fragments (Fig. 1). Each Fc monomer is composed of Cγ2 (N-terminal) and Cγ3 (C-terminal) domains. In addition to the hinge...
disulfides at the N-terminus of the Cy2 domain, a noncovalent Cy3/Cy3 polypeptide interface links the C-terminal region. Each Fc polypeptide contains a single conserved and essential asparagine (297)-linked complex-type biantennary glycan (N-glycan; Fig. 1b) [7]. The N-glycan had been shown to reside within a cavity between the Fc polypeptide monomers [8] and was initially believed to be stably bound in this location. However, given this model, it was unclear why the N-glycan was sensitive to glycosylhydrolases and glycosyltransferases [9–11] until nuclear magnetic resonance (NMR) spectroscopy measurements of the terminal glycan residues provided clear evidence for unbound conformations [12,13].

The N-glycans are essential to proper Fc function and antibody-dependent cellular cytotoxicity [14]. Particular glycoforms are also known to modulate immune responses and alter stability of therapeutic antibodies [7,15–17]. However, it is not entirely clear how these effects arise. Recent structures of the Fc–FcγRIIIa complex showed that the monomeric receptor bound asymmetrically to the Cy2 domains of the Fc dimer near the hinge [5,6,18]. This is intriguing because it is known that changes at the glycan termini affect Fc–FcγRIIIa affinity [6,19,20], despite the fact that glycan termini are far away from the site of receptor binding (Fig. 1). A possible explanation, based on x-ray crystallography derived structures, is that the N-glycan termini mediate affinity by modulating the Cy2 domain positions and thus the organization of the FcγRIIIa binding site [19]. The various structures of Fc and its complexes provide some indication of Fc conformational heterogeneity, though it is unclear whether the complete range of Fc motion is sampled. An understanding of these motions would provide a more complete view of IgG behavior in solution and the factors contributing to FcγRIIIa-mediated immune activation.

Our goal is to describe the factors that influence IgG-mediated immune activation, starting with this investigation of Fc conformation sampling. The crystal structure we obtained using a single homogenous

Table 1. Summary of crystallographic information for IgG1 Fc.

<table>
<thead>
<tr>
<th>Space group</th>
<th>P2₁2₁2₁</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molecules per asymmetric unit</td>
<td>2</td>
</tr>
<tr>
<td>Unit cell parameters</td>
<td>a, b, c (Å) 49.1, 79.8, 128.4; α, β, γ (°) 90, 90, 90</td>
</tr>
<tr>
<td>Resolution (Å)</td>
<td>67.82–1.90 (1.95–1.90)</td>
</tr>
<tr>
<td>Unique reflections</td>
<td>37,848 (2326)</td>
</tr>
<tr>
<td>Completeness (%)</td>
<td>98.3 (82.99)</td>
</tr>
<tr>
<td>Redundancy</td>
<td>6</td>
</tr>
<tr>
<td>Rmerge (%)</td>
<td>0.08</td>
</tr>
<tr>
<td>Rcrys (%)</td>
<td>21.4 (27.3)</td>
</tr>
<tr>
<td>Rfree (%)</td>
<td>0.258 (0.292)</td>
</tr>
<tr>
<td>No. of protein atoms</td>
<td>3350</td>
</tr>
<tr>
<td>No. of water molecules</td>
<td>149</td>
</tr>
<tr>
<td>Average B-factor (Å²)</td>
<td>32.8</td>
</tr>
<tr>
<td>Protein chain A</td>
<td>32.8</td>
</tr>
<tr>
<td>Protein chain B</td>
<td>30.6</td>
</tr>
<tr>
<td>Carbohydrate residues</td>
<td>66.9/46.5</td>
</tr>
<tr>
<td>(mono A/mono B)</td>
<td></td>
</tr>
<tr>
<td>Water molecules</td>
<td>32.9</td>
</tr>
<tr>
<td>rmsd</td>
<td></td>
</tr>
<tr>
<td>Bond lengths (Å)</td>
<td>0.024</td>
</tr>
<tr>
<td>Bond angles (°)</td>
<td>1.9</td>
</tr>
<tr>
<td>Ramachandran statistics (%)</td>
<td></td>
</tr>
<tr>
<td>Most favored region</td>
<td>94.2</td>
</tr>
<tr>
<td>Allowed region</td>
<td>5.8</td>
</tr>
<tr>
<td>Generously allowed</td>
<td>0.0</td>
</tr>
<tr>
<td>PSVS Z-scores [21]</td>
<td>-1.12</td>
</tr>
<tr>
<td>Verify3D [22]</td>
<td>-0.25</td>
</tr>
<tr>
<td>Proall [23]</td>
<td>-0.47</td>
</tr>
<tr>
<td>Procheck (phi–psi) [24]</td>
<td>0.01</td>
</tr>
<tr>
<td>MolProbity [25]</td>
<td></td>
</tr>
<tr>
<td>Values in parentheses are for the highest-resolution shell.</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 1. A structural model of the IgG1 Fc, determined by x-ray crystallography, is labeled to highlight Fc structural features (a). The hinge region, not resolved in this structure, is indicated with broken lines along with the previously identified FcγRIIIa binding site [5,6]. A cartoon shows a representative IgG1 Fc N-glycan and the conserved glycosidic linkages (b). GlcNAc: N-acetylgalactosamine; NANA: N-acetyleneuraminic acid. A G2F glycan, as studied here, would be identical to the glycan shown in (b) if the NANA residue were removed.

Please cite this article as: Frank Martin, et al, Immunoglobulin G1 Fc Domain Motions: Implications for Fc Engineering, J Mol Biol (2014), http://dx.doi.org/10.1016/j.jmb.2014.01.011
glycoform terminated with galactose (Gal) on each of the branches of the biantennary N-glycans extends the range of conformers observed in structures for similar constructs. Prompted by the observation of this new conformational form, we performed all-atom simulations of the Fc and probed the factors that contribute to Fc motion.

Results

X-ray crystallography

Crystals from a number of different polyethylene glycol (PEG)-based conditions produced moderate- to high-resolution data sets, with the polypeptide and glycan chains clearly resolved. However, crystals from only one condition diffracted to greater than 2.0 Å resolution, and these crystals revealed a previously unobserved conformation (Fig. 1a). Refinement of this structure was pursued and crystallographic statistics are given in Table 1.

A comparison of the refined structure and Fc structures from the Protein Data Bank (PDB) [26] containing similarly remodeled Gal-terminated N-glycans revealed striking differences in the orientation of the Cγ2 domains (Fig. 2a). The positions of both Cγ2 domains in our structure were outliers when compared to other Fc structures (Fig. 2b) and were suggestive of a greater degree of Fc conformational heterogeneity within a single glycoform.

Fig. 2. A comparison of IgG1 Fc monomers highlights the positional diversity of the Cγ2 domains in Fc remodeled to the Gal-terminated glycoform (a) and rotated (c), or from a representative sampling of database structures (b and d). The structure reported herein is drawn in blue.
than previously observed. A similar, though slightly greater, range of Cy2 positions was found upon comparison to a broader sampling of Fc structures from the database, which included the presence of other glycan types and, in a few cases, Fc-binding polypeptides (Fig. 1b and d).

A complete analysis of the domain orientation angles and distances is shown in Table 2. For purposes of quantitation, alignments were generated using the Cy3/Cy3 dimer portion of the models due to the high similarity across all models (<0.5 Å rmsd). Three point angles were then defined from the Cα atoms of residues Y300, M428, and Q362 for Cy2/Cy3 angles or M428 (chain A), Q362 (chain A), and M428 (chain B) for Cy3 (chain A)/Cy3 (chain B) angles. Four point dihedral angles were defined from the Cα atoms of residues Y300, Y319, M428, and Q362 for Cy2/Cy3 dihedral angles or M428 (chain A), Q362 (chain A), and M428 (chain B) for Cy3 (chain A)/Cy3 (chain B) dihedral angles. Cy2 interdomain distances were represented by the distance between the Cα of Asn297 where the glycans are attached. Among the structures with homogenous Gal-terminated glycans, ours has the largest Cy2/Cy3 dihedral angle (−31.1° compared to a previous range of −20.4° to −30.5°) and the smallest Cy2–Cy2 distance (29.1 Å compared to a previous range of 32.2–33.3 Å).

Considering all glycoforms and other types of complexes, ranges expand to encompass the values we observe (−20.4° to −33.4° and 22.8 to 36.2 Å). Different reference points for the Cy2/Cy3 angle and Cy2–Cy2 distance were noted previously [28] and are shown for comparison in Table S1. Our structure also gives a good view of glycan position and interaction, particularly for the α1-6Man-linked branch (Fig. S1).

**Computational modeling of Fc conformation**

It is unclear whether the range of distinct Fc conformational states is limited by crystal contacts or alternative states are sampled in solution. Therefore, we probed the range of Fc polypeptide and glycan motions using extended, all-atom computational simulations of Fc with Gal-terminated glycans and an intact hinge region (which was present, though not necessarily resolved, in all the Fc models used for Table 2). Our new structure served as a computational starting point and revealed that the unique conformation observed by x-ray crystallography, like many other database models, was only lightly populated during the MD simulation. However, this unique conformation was preserved in a simulation of the starting model confined within the crystalline lattice (data not shown), indicating that this state, and likely many others determined by x-ray crystallography, is restrained by crystal lattice contacts.

Extensive 200-ns simulations of Fc motions relieved of solid-state contacts and initialized with a database model including hinge coordinates (PDB ID: 3SGJ [18]) provided an indication of Fc motions (Fig. 3a). The Cy2 domains opened and closed at the hinge region and sampled a range of conformations not seen through x-ray crystallography. MD simulations, such as these, offer insight into macromolecular flexibility but fall short of complete descriptions of motion due to computational limits (extensive microsecond to millisecond simulations are currently not practical for systems of this size). Furthermore, rates of motion and population distributions are likely not accurately reproduced *in silico*. However, we believe that this 200-ns simulation provides a limited, though likely appropriate, view of sampled states. Given the limited time scale of simulations, it is unlikely that the MD overpredicts flexibility. Future experiments in solution may well provide validation of rates of motion, amplitudes, and most favored orientations for Cy2/Cy3 as presented below, though this lies at the cutting edge of contemporary structural biology due to the size and complexity of this system.

### Table 2. Summary of IgG Fc conformational parameters.

<table>
<thead>
<tr>
<th>PDB deposition</th>
<th>Chain</th>
<th>Cy2/Cy3 angle (°)</th>
<th>Cy2/Cy3 dihedral angle (°)</th>
<th>Cy2/Cy2 inter-Asn297 distance (Å)</th>
<th>Resolution (Å)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Herein</td>
<td>A</td>
<td>98.5</td>
<td>−31.1</td>
<td>29.1</td>
<td>1.9</td>
<td>G2F glycan</td>
</tr>
<tr>
<td>4KU1</td>
<td>B</td>
<td>95.1</td>
<td>−30.6</td>
<td>33.3</td>
<td>3.1</td>
<td>G2F glycan</td>
</tr>
<tr>
<td>1H3V [19]</td>
<td>A</td>
<td>96.0</td>
<td>−30.5</td>
<td>32.2</td>
<td>2.8</td>
<td>G2F, symmetric</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>91.5</td>
<td>−27.5</td>
<td>22.8</td>
<td>4.1</td>
<td>Unmodified glycan</td>
</tr>
<tr>
<td>1H3W [19]</td>
<td>A</td>
<td>95.7</td>
<td>−28.5</td>
<td>33.4</td>
<td>2.9</td>
<td>Unmodified glycan</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>97.6</td>
<td>−20.4</td>
<td>31.9</td>
<td>1.65</td>
<td>Peptide bound Gal visible</td>
</tr>
<tr>
<td>1FC1 [8]</td>
<td>A</td>
<td>96.3</td>
<td>−30.4</td>
<td>36.2</td>
<td>3.2</td>
<td>Fc–FcyRIIa complex</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>92.2</td>
<td>−24.6</td>
<td>33.5</td>
<td>2.2</td>
<td>Fc–FcyRIIa complex</td>
</tr>
<tr>
<td>1L6X [27]</td>
<td>—</td>
<td>91.6</td>
<td>−22.8</td>
<td>31.9</td>
<td>1.65</td>
<td>Peptide bound Gal visible</td>
</tr>
<tr>
<td>1E4K [5]</td>
<td>A</td>
<td>92.0</td>
<td>−26.0</td>
<td>103.9</td>
<td>3.2</td>
<td>Fc–FcyRIIa complex</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>103.9</td>
<td>−33.4</td>
<td>Fc–FcyRIIa complex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3AY4 [6]</td>
<td>A</td>
<td>95.2</td>
<td>−24.9</td>
<td>91.0</td>
<td>20.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>91.0</td>
<td>−20.5</td>
<td>75 to 108</td>
<td>24 to 37</td>
<td></td>
</tr>
</tbody>
</table>

Please cite this article as: Frank Martin, et al, Immunoglobulin G1 Fc Domain Motions: Implications for Fc Engineering, J Mol Biol (2014), http://dx.doi.org/10.1016/j.jmb.2014.01.011
The range of $C\gamma_2/C\gamma_3$ domain orientation angles sampled in the simulation (75° to 108°) was greater than that of the database models (91° to 104°) (Fig. 3b and Table 2). Furthermore, the database models populated the high end of the MD distribution. The dihedral angle, describing the twist of $C\gamma_2$ relative to $C\gamma_3$, showed variability with the simulation range ($-46^\circ$ to $5^\circ$) greater than the database models ($-33^\circ$ to $-20^\circ$). The $C\gamma_2$-$C\gamma_2$ distance variation sampled was substantially larger than that sampled by crystallography of Fc with Gal-terminated glycans and similar to that seen for the entire set of Fc structures. The variability of the $C\gamma_3/C\gamma_3$ angle and dihedral angle, as expected, was markedly less than those for $C\gamma_2/C\gamma_3$ (Fig. S2).
Further analysis of Fc from MD and database models revealed more differences. The conformations most frequently sampled by MD (~87° angle, −15° to −25° dihedral) are not coincident with conformations of the database models including those bound to FcγRIIIa (Fig. 3b). Assuming that these simulations faithfully recapitulate solution behavior, this suggests two possibilities: Gal-Fc in solution is not perfectly poised to bind FcγRIIIa, or crystal contacts distort Fc conformation in the complex, as observed for unliganded Fc. Perhaps simulations of Fc with GlcNAc- or Man-terminated glycans (thought to bind weaker to FcγRIIIa [29]) or the Fc–FcγRIIIA complex will reveal conformations more similar to the database models.

Analysis of carbohydrate motions

Terminal carbohydrate residues experience considerable motion relative to the polypeptide, based on previous experimental results [12,13]. Specifically, these prior studies showed the α1-6Man-linked branch of the complex-type, biantennary glycan (Fig. 1b) exchanged between free and bound conformations, while the (α1-3Man-linked)Gal residues appeared unconstrained by polypeptide contacts. Gal behavior in the computational simulations presented here was qualitatively consistent with published results in that the (α1-6Man-linked)Gal residues occasionally lifted off the protein surface and exhibited enhanced motion. A range of carbohydrate structures was observed as highlighted in Fig. 4. Both (α1-6Man-linked)Gal residues occupied polypeptide bound (~9 Å, as defined by the Pro244 Cα–Gal C1 distance in Fig. 4b) and unbound states (>9 Å). The partial occlusion of the Gal–polypeptide interface by movement of the Glu258 carboxylate at some times explained the presence of two discrete bound Gal states occurring at ~6 and ~8 Å. The behavior of this Gal residue, under conditions explored in simulations reported here, appeared decoupled from Cγ2/Cγ3 motions, as might be expected as both the attachment site and the terminal glycan binding region reside within the same Cγ2 domain. It is possible that interactions leading to correlated motions could occur as with long time scale excursions completely outside the cavity. Such excursions must occur to allow enzyme modification of glycan termini.

Analysis of glycosidic torsion angles revealed a strong correlation with glycan bound and unbound states. Gal and GlcNAc residues on the glycan branch termini showed similar conformational distributions that compared favorably to identical motifs in the PDB with the exception of the α1-6Man-linked residues of chain B, which had comparatively restricted distributions (Fig. 5). Torsion angles of the core Fuc, α1-3Man, and βMan residues showed a similar pattern, suggesting that linkage and residue identities influenced conformation to a greater extent than polypeptide interactions with the exception of α1-6Man-linked residues on chain B, which, like the chain B Cy2 domain (Figs. 4b, 5c, and, 6a and c), was likely more restricted due to contacts with the asymmetrically disposed hinge region populated in the MD simulations (not shown). This asymmetry

Fig. 4. The N-glycan from both chains exhibits reversible dissociation from the polypeptide surface. (a) An overlay of two N-glycan positions from chain A; the unbound glycan is drawn as a gray stick model. (b) A plot of the Pro244–Gal distance shows multiple states with the glycan bound and unbound to the polypeptide surface. (c) The ω torsion angle measurement of the αMan residue linked to the 6-position of the branch point βMan along the MD trajectory. A broken red line is used to denote the midpoint of the structural excursion for the chain A Man.
Fig. 5. Glycosidic torsion angle measurements ($\Phi$, $\Psi$, $\omega$) for the Gal (a), GlcNAc (b), and Fuc (c) residues. Measurements from models in the PDB are shown for comparison.
likely reflects the limited sampling of the simulation compared to the time scale required for a conformational change of the hinge (Fig. 3b). Over long times, it is expected that the hinge is distributed equally towards chain A and chain B due to the dimer symmetry of the system. The $\omega$ torsion angle of the $\alpha$1-6Man residue, however, showed a clear correlation with the glycan state. The chain A $\alpha$1-6Man $\omega$ torsion angle shifted to 180° from $-60^\circ$ to $-65$ ns into the simulation and did not return (Fig. 4c). In the simulation snapshots with a 180° $\omega$ angle were unbound for 70% of the time compared to 2% for frames with a $-60^\circ$ $\omega$ angle (Fig. 4b and c).

The role of the hinge and interface

The role of motion-restricting Fc amino acid residues was probed in silico. The hinge region was identified as a target for mutation due to the presence of the potentially conformationally restricting interdomain covalent bonds. Surprisingly, a 200-ns simulation of Fc without 10 N-terminal hinge residues

---

Please cite this article as: Frank Martin, et al, Immunoglobulin G1 Fc Domain Motions: Implications for Fc Engineering, J Mol Biol (2014), http://dx.doi.org/10.1016/j.jmb.2014.01.011
(and the two disulfide bonds as shown in Fig. 7a–c) behaved similarly to the wild-type (wt) Fc, though one Cγ2 domain did collapse onto the Cγ3 (observed for the small Cγ2/Cγ3 angle structures in Fig. 7b). The greatest difference was observed in the Cγ2/Cγ3 angles with a slight displacement to smaller values and a slightly broader distribution in the hinge-deletion simulation [81.6 ± 7.9° compared to 89.6 ± 3.9° (±1 SD of the mean) for the wt simulation, Fig. 7a–c]. Simulations of Fc mutated to disrupt two ionic interactions across the Cγ2/Cγ3 interface (Glu380Ala and Glu430Ala) likewise showed a greater distribution of Cγ2/Cγ3 angles (89.5 ± 8.8°) as well as limited sampling of extended structures (Fig. 7d–f). Also, multiple small, <5-Å, reversible interface breaks were observed in multiple simulations (Fig. 7d–f) and supported the role of Glu380 and Glu430 in Fc conformational stability. The Cγ2 domains of hinge-deleted and Glu-mutated Fc were considerably less restricted (112.3 ± 15.9°, Fig. 7g–i) in additional simulations, indicating the importance of both regions in limiting Cγ2 motion. These extensive simulations provide clues to Cγ2 motions; however, the actual range of wt and mutant Fc motions will be the subject of further in vitro experimental studies.

**Discussion**

These studies highlight previously unseen Fc domain conformations and motions. This is primarily due to the fortuitous recovery of a new Fc crystalline form and the accessibility of computational tools to investigate large glycoproteins with appropriate force fields over relatively long time scales. There is no doubt that Fc motions remain undersampled. Efforts to describe the actual range of wt and mutant Fc will be the subject of future accelerated MD simulations and solution NMR studies. Despite this limitation, the range of motion described here expands our understanding of conformations that can be sampled in solution.

**Fc domain motions**

In MD simulations, the Cγ2 domains experienced greater amplitude of motion than anticipated once relieved of crystal contacts. Though multiple studies have revealed new conformations of Fc built from x-ray diffraction data and mutant Fcs (for example, but not limited to Refs. [28,30–35]), in this study, we focused on those reported for human IgG1 Fc having Gal-terminated N-glycans and human IgG1 Fc in...
complex with the Fc γ receptor (FcγR), with the goal of thoroughly characterizing appropriate Fc motions.

The implications of greater motion for FcγR binding can be many. However, the sampling does indicate that there are a range of low-energy conformers from which various FcγRs can choose. It is possible that conformer populations are tuned by glycoform selection to produce desirable receptor affinities, and thus an important regulatory mechanism. The immune system must walk a fine line between defensive response and harmful autoimmune reactions. High-affinity interactions could be undesirable and lead to spurious FcγR-mediated activation. On the other hand, low affinity could be overcome upon proper presentation of Fcs by multiple antibodies on an opsonized pathogen, due primarily to multivalency (high avidity) effects. It has been suggested that the sugars at the N-glycan termini influence the Fc structure through the Cy2 domain orientation and thus receptor binding [19]. We would simply add that it may not be static structural perturbations that are primary effectors of this phenomenon, but rather the glycan regulates the range of structures sampled and thus the population of FcγR-binding-competent Fc conformations.

If Cy2 motions are an important component of FcγR-mediated immune activation, the genetically encoded Fc features contributing to this interaction may be investigated and perhaps engineered. The results of our simulations identify both the disulfide-bonded hinge region and the Cy2/Cy3 interface as important regulators of Fc motion. The hinge disulfides likely restrict the range of Cy2 motions by acting as a tether, though it was surprising that hinge deletion did not more dramatically alter Fc motions. The hinge works in concert with the Cy2/Cy3 interface, which, upon inspection, is a poorly defined interface with little buried surface area and few hydrophobic interactions but with two Lys−Glu+ ionic interactions that are stable throughout almost the entire wt Fc simulation (data not shown). It appears that perturbing this interface influences Cy2 position, particularly in the absence of the hinge. A recent study of human IgG2 Fc showed similar interface behavior [36]. This is intriguing because interface mutations to stabilize Fc in an FcγR-binding conformation should dramatically alter the effector functions of Fc. This has obvious implications for therapeutic monoclonal antibody design and would be independent of the hinge.

N-glycan motions

The motion of the carbohydrate in the computational simulation was qualitatively consistent with expectation based on NMR measurements [12,13]. The (α1-6Man-linked)Gal residues on both chains experienced conformations bound to the polypeptide surface as well as free from this restriction (Fig. 4). However, the free form of the glycan still appears sterically restricted from enzymatic modification, due to a location in the cavity between polypeptide domains, and thus a complete quantitative analysis of glycan populations using these data is not appropriate. This may simply be due to computational limitations. NMR evidence suggested the exchange of the two glycan states to occur with a half-life of hundreds of microseconds [12], which was obviously not sampled with the relatively short 200-ns simulation. Directed MD simulations, accelerated MD approaches [37], or simulations beginning with starting conformations chosen using appropriate sampling algorithms might provide greater insight into the complete ensemble of Fc N-glycan motions, as well as that of the peptide domains that seem to confine them.

That the α1-6Man branch of a biantennary N-glycan experiences greater conformational heterogeneity than the α1-3Man branch of the glycan is expected based on the presence of an additional glycosidic torsion angle (ω) [38]. Thus, if restricting the Fc N-glycan is necessary for effective FcγRIIIa binding, a conformationally constraining interaction between the Fc polypeptide and its glycan through the α1-6Man-linked branch is poised to provide the greatest total glycan restriction with the smallest possible interface. In another sense, coordinating the α1-6 branch terminus is an efficient way to restrict an entire biantennary N-glycan.

Experimental Procedures

Materials

All materials were purchased from Sigma Aldrich (St. Louis, MO), unless otherwise noted.

Protein crystallization, model building, and refinement

Fc from pooled human serum (Athens Research and Technology, Athens, GA) was remodeled to display Gal-terminated, core-fucosylated glycans as previously described [11]. Protein was purified following glycan remodeling using a Protein A resin (GE Healthcare) and eluted with 100 mM glycine, pH 3.0. Fractions were immediately neutralized with 100 mM Tris, pH 8.0, and buffer exchanged to 25 mM Mops and 100 mM KCl, pH 7.2. Protein was concentrated to 16 mg/mL using a 10-kDa molecular mass cutoff centrifugal unit (Millipore).

The PEGRx™ screens 1 and 2 (Hampton Research, Aliso Viejo, CA) were assayed for crystallization by diluting the protein solution (1 μL) with reagent (1 μL) and suspending the drop on a glass coverslip over 1 mL of reagent. Crystallization trays were incubated at 25 °C. Large, high-quality crystals typically appeared within 5 days and were excised and transferred to a cryo-compatible liquor by stepwise addition of PEG 200...
(2.5% increments) to 10% and flash frozen in liquid nitrogen. Protein crystals with favorable diffraction characteristics were found using a reagent containing 0.1 M sodium acetate, pH 6.5, and 30% (w/v) PEG 1500.

Data were collected at the Advanced Light Source through SER-CAT on beamline 22-BM. Data indexing, integration, and scaling were performed with HKL2000 [39], and initial phases were obtained by molecular replacement using a polyalanine model of chain A from an existing model of the human Fc fragment (1L6X). After a reasonable solution was identified, a composite omit map was generated using the simulated annealing protocol and the map and model were inspected. All residues that did not correlate with electron density were removed and iterative rounds of model building and refinement were carried out using the programs Coot [40] and CNS [41], respectively. The final round of refinement and the final model were prepared for deposition using CCP4 [42].

**MD simulations**

The starting structures were built based on our new crystal structure and PDB entry 3SGU [18]. Monosaccharide rings having distorted ring geometries were assigned a C1 chair conformation and missing terminal Gal residues were added to initialization models prior to generating a topology file for AMBER 12 using the tleap tool [43,44]. The AMBER ff99SB [45] force field was used for the protein, and carbohydrate parameters were taken from the GLYCAMP06 force field [46]. The glycoprotein was solvated in a box of TIP3P water with approximate dimensions 91 Å × 91 Å × 91 Å using periodic boundary conditions. A two-step energy minimization was carried out for removal of initial unfavorable contacts followed by heating the system slowly from 5 to 310 K for 100 ps in the canonical NVT ensemble, followed by 100 ps at constant temperature of 310 K and constant pressure of 1 atm. Starting structures for the MD simulations of the glycoprotein variants with mutations and/or hinge deletion were prepared and equilibrated in an analogous manner. Production dynamics of the 200-ns wt Fc simulation was performed using PMEMD using 96 CPUs of the NSF Kraken Cray XT4 supercomputer at 310 K with snapshots recorded every 20 ps. The other production simulations were run on NVIDIA Tesla C2070 GPUs using the GPU accelerated version of the AMBER 12 PMEMD software [47–49]. The time step used for all stages was 2 fs, and all hydrogen atoms were constrained using the SHAKE algorithm [50]. Long-range electrostatics were included using the particle mesh Ewald algorithm [51]. Structural snapshots were recorded every 2 ps. MD trajectories were analyzed using Conformational Analysis Tools [5] and VMD [52]. Structure images were prepared with VMD or PyMOL (The PyMOL Molecular Graphics System, Version 1.5.0.5 Schrödinger, LLC). Glycan torsion angles from the PDB were obtained using the GlyTorsion functionality on the Glycosciences’ website [53]. Averaging over 10 frames reduced noise in the plotted trajectories. Duplicate simulations gave similar results (data not shown).

**Accession numbers**

The PDB accession number for the coordinates and structure factors for the IgG Fc structure is 4KU1.

**Acknowledgements**

This work was financially supported by grants K22AI099165 (A.W.B.), R01GM033225 (J.H.P.), and P41GM103390 (J.H.P.) from the National Institutes of Health, and by grant NSF1148276 (R.C.W.) from the National Science Foundation (NSF). The work was also supported by a CUDA fellowship to R.C.W from NVIDIA Inc. Time on the NSF Kraken Cray XT4 supercomputer was provided by NSF award TG-MCB090110 to R.C.W. The content of this work is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health or NSF. X-ray data were collected at Southeast Regional Collaborative Access Team (SER-CAT) 22-ID (or 22-BM) beamline at the Advanced Photon Source, Argonne National Laboratory. Supporting institutions may be found at www.ser-cat.org/members.html. Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. W-31-109-Eng-38. A.W.B. was additionally supported by funds from the Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology at Iowa State University.

**Appendix A. Supplementary data**

Supplemental information includes two figures and one table. This material can be found with this article online at http://dx.doi.org/10.1016/j.jmb.2014.01.011/.

Received 11 November 2013; Received in revised form 5 January 2014; Accepted 29 January 2014

Available online xxxx

**Keywords:**
glycoprotein; N-glycan; molecular dynamics; x-ray crystallography
Abbreviations used:
Fc, fragment crystallizable; FcγR, Fcγ receptor; MD, molecular dynamics; PEG, polyethylene glycol; PDB, Protein Data Bank; wt, wild type.

References


